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The influence of a deterministic coupling between the reaction coordinate and a transverse normal mode on

the reaction rate is considered within the context of classical {stochastic) dynamics. Our theoretical approach.

is based on a scheme of elimination of rapidly relaxing (irrelevant) variables. This procedure, perturbational in
nature, makes it possible to get corrections of increasing accuracy to the results of the “standard adiabatic
method” as perturbation terms of higher and higher order are taken into account. In the large friction case,
the very first significant correction to the standard adiabatic scheme is shown to picture the reaction

coordinate as being driven by a diffusionlike equation exhibiting instability phenomena. Thus, cur approach
makes ai intriguing link between the activation of a reaction process via excitation of a nonreactive normal
mode and noise-induced phase transition phenomena. When the frequency of the nonreactive mode varies
slowly witk the reaction coordinate, the reaction threshold can be expressed by a simple analytical formula.
Results of computer calculations, which allow the exploration of a still wider range of physical conditions, are

also discussed.

l. INTRODUCTION

The influence of nonreactive modes on reaction coor-
dinates has recently been discussed from two different
points of view. '™ Christoffel and Bowman! confined
their attention {0 an isomerization process in dilute
phase. In their bidimensional model, the reactive mo-
tion along a double-well potential is symmetrically cou-
pled {o another degree of freedom described as a trans-
verse harmonic oscillator. The interaction between the
reactive and nonreactive modes appears because the
freguency of the transverse osegillator depends on the
actual value of the reaction coordinate. On the other
hand, Grote and Hynes, *® completely neglected this kind
of interaction while tracing back the dependence of the
reaction rate on the nonreactive modes to the influence
of the solvent.

The major aim of this paper is to extend Christoffel
and Bowman’s investigation to the condensed phase or,
equivalently, to study the effect of a deterministic cou-
pling between reactive and nonreactive modes within
the context of a classical scheme such as that of Grote
and Hynes. We shall consider a bidimensional model;
the form of the potential used can be written in terms
of x, the reaction coordinate, and y, the coordinate of
a transverse normal mode, as

Vix, ) =¢(x) + 0% (x)y" , (1.1)

¢(x} is a double-well potential modeling the chemiecal
reaction under study, which we shall assume to be of
the fellowing analytical form

0 =4 (2~ a¥? (1.2)
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For simplicity we omitted the exponential terms appear-
ing in the potential used by Christoffel and Bowman.}
Their potential is a rather refined expression for deal-
ing with the specific problem of ammonia inversion,
whereas our main interest is to study a unspecified re-
action process taking place in condensed phase. There-
fore, we are not rigidly bound to use the same analytical
form. Furthermore, we think that the physical effects
that we are going to discuss do not significantly depend
on the detailed form of the double-well potential. Simi-
tar remarks can also be applied o the detailed form of
W o4{#), which will be assumed to be given by the follow-
ing expression

Worex) = B wf+ d )]V E (1. 3)
where
w?
Yx) = = "D Ryap exp(= 537 (1.4)

{Christoffel and Bowman used an effective frequency of
the form, w,,{x)=wy+[2{x)/wg].} This prevents us
from exploring the case where X, is larger than 1.

The quantity » in Eq. (1.4) can be regarded as the range
of the coupling of the transverse mode onto the reactive
motion. For the Grote and Hynes’ assumption®® on the
mode separability in the saddle region to be valid, a
fairly large value of ¥ is required.

We shall focus our attention on the following set of
equations of motion:

X=v , {1.5)
b=-¢ &) —vr -y~ F) {1.57)
b=w, (1.5')
= = a0~ " L {x)y — ywke £ . (1.5

As far as the stochastic forces f(#) and F'{) are con-
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cerned, we shall assume that they are Gaussian white
noises defined by:

(F{n) =2p 81 , (1.6)
Sy ={rin=0, {1.61
FIriey =2n' 6D . {1.6'%)

This means that the coupling between reactive and non-
reactive modes via the solvent is completely neglected.
We do not claim this assumption to be realistic. Rather,
we want to study a physical condition left completely
unexplored by Grote and Hynes.®® They assume, in
fact, that reactive and nonreactive modes can only in-
teract via the cross correlation functions (ff'{f)} and

Frran.

The first step of our approach consists in replacing
the get of differential equations (1.%) by the correspond-
ing Fokker—Planck equation using standard technigues:

8%p(ﬂc, ¥, Uy W, 1} =[— v é—a;; +¢'(x) % + i {x)" é%

] o 87 ] " 8 . 8
+}’{8U v+ @%) avz}—-w oy +ny" " P{x) 5 HY0 3

8 o O°
+h{aw w + ™ awz}]p(x,y,v, w, 1) . (1.7
In the applications of this paper, we will focus our atten-
tion on the case n=2.

Grigolini and co-workers*™" developed a computational
algorithm (henceforth referred to as the continued-frac-
tion algorithm} which has been proven successful, espec-
ially for dealing with nonlinear Fokker—Planck equations.
However, the case of four variables represents a re-
gion where that algorithm, when applied to evaluating
the rate of escape from a potential well, still has un-
solved convergence problems. The case of three vari-
ables® is the maximum computational success achieved
s0 far.

In order to simplify the problem, we shall use an
adiabatic reduction technigue of the type discussed in
detail in Ref. 7, which produces corrections to the
standard procedure.! A formalism of adiabatic reduc-
tion is developed in Sec. II to derive the general equa-
tion of motion of a projected probability distribution,
Eq. (2.16). In Sec. III, the influence of the transverse
normal mode on the reaction rate is discussed; to clar-
ify the nature of our approach, two major limiting cases
are considered: (I} the low friction case and {II) the
diffusional case. This section also includes some
analytical results aimed at providing a qualitative un-
derstanding of the role played by the mode interaction
on the chemical reaction rate. Section IV confains some
final remarks about the critical importance of the cou-
pling.

Il. GENERAL THEQORY
Let us consider a system described by the following
equation of motion

ga;p(a, b, ) =L p(a, b, 1) 2.1

=(Ly+ Ly} pla,b, #), 2.2}

3321
where
Ly=L,+L, (2.3)
and {a, b} are two sets of stochastic variables. L iga

Fokker—Planck operator with a component L, acting on
variables a, a component L, acting on variables b and
an interaction part L, acting both on variables a and on
variables b, Throughout this paper, it is assumed that
a identifies the slow, “relevant” variables and b the
fast, “irrelevant” ones.

It has been shown earlier™?® that the interaction pic~
ture is convenient to apply Zwanzig9 projection proce-

dure. For a Lagrangian separated in two parts,
L=1"+1’ (2.4)
and the interaction picture defined by
B =e ™ o) (2.5)
L'{t)=e L o (2.6)

the time evolution of a projected part may be written®

2 PB() = PL/O PB() + PL(1)(1 - P) G, 0)(1 — PYB(0)

+ f “ar LY - P) Gt (L = P)L' (1) PB(T) . (2.7)
0

where

t

Glt,7) =e%p [ ds(1-P) L) (2.8)

T
and the arrow denotes the chronological ordering oper-
ator.® The second term in the right-hand side of Eq.
{2.7) may be disregarded if we assume® that the fast
variables are in equilibrium in the initial prepared
state. In this work we shall assume that there is a
clear separation between the time scales of the slow,
relevant variables a and the fast variables b. The dis-
tribution of the slow variables is described by the pro-
jected probability density Pp{f), with the projection op-
erafor P defined by

Pp(t) :Pp(a:v bs t)

=psl(b)fdbp(a,,b, 1, (2.9)
where p(b) is the equilibrium canonical distribution on
the space of variables b,

We define now an interaction picture such that the
fast time variation induced upon p{a, b, ?) by L, is sepa-
rated out,

pla,b, t)=e¥ pla,b, 1) , (2.10)
L'(t)=e 2o (L + L) e (2.11)
=L, +Lyt) . (2.12)

In Eq. {2.12} we took into consideration the commuta-
tion of L, and L,. Below, we shall also use the com-
mutation property of L, with the projection operator P
defined by Eq. {2.9) and with its complement (1 - P).

Substitution of Eq. (2. 12) into Eq. {2.7) leads to
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2 Pl =L, PR+ PL{) PR + [ d7PLy()(1-P)
o

X explL(t - D] 6@, 1 - P)L(T)PHMT) , (2.13)
where G{f, T) is given by Eq. (2.8) with L{s) substituted
for L'{(s).

By developing G(f, 7) into a Taylor power series, Eq.
(2. 13} may be recast into

d $
o PR = LR+ PLy() PR + 2 [ dsDyfs, s)B(s) ,
=1 0

(2.14)
where

Dy(t,5) =PL{H)(1 ~ P)exp{L,(t - s}] Ly(s}P , {2, 15)

¢ 51 Sp-2
Dk(f,s)=f ds, dsz---f dSys
£ 5 &

% PLy{t) (1 - P) exp[L{t — $)]Ly(sy) - -+ (1 = PYLy(5,.1)

X(1~P)L,(s)P, k=2 . (2.15")

The kernels D,({, s} in Eq. (2. 14) are functions of the
time lapse (f - s) only and decay to zero on the time
scale of the fast variables, characteristic time 7,. We
are looking for the time evolution of Po{f) on the time
scale of the slow variables, characteristic time T,.
Therefore, Pp(s) in the integrands of Eqg. (2.14} does
not change appreciably in times of the order of 7, << 71,
and the gquantity Pp{{) may be substituted for it. More-
over, the exponential factors exp[L, (¢ — )] that appear
in the D(t, s} of Egs. (2.15) may be disregarded as they
would introduce corrections of the order of (r,/7,).

In this work we shall only use the lowest crder term
in the summation in the right-hand side of Eq. (2.14)
with the final result

= Ph(t) = L,PBlt) + PL,(1) PB()

+ f *ds PL(1 - PYLy(s)PBLS) . (2. 16)
4]

This is the equation to be used in all the applications

of this theory that are discussed in the next section.
The criteria used to establish the order of magnitude
of terms to be kept in Eqg. {2. 16) need some further
clarification. As discussed above, the memory ker-
nels D,(t, s} have a memory time of the order of 1,; the
order of magnitude of the interaction operator L., {1/7,)
is assumed to be much smaller than (1/7,). The kernel
D,, of order of magnitude {1/1,)*!, is integrated %

- times giving a contribution to Eq. (2.14) of order (1/7,)
X (1,/T)*. Therefore, the terms disregarded in writing
Eg. (2.18) are smaller than those preserved there by a
factor of at least {7,/7T,) which is assumed to be very
small.

lll. THE INFLUENCE OF THE TRANSVERSE
NORMAL MODE ON THE REACTION RATE

When dealing with the problem discussed in Sec. I,
two major limiting cases are especially suited for mak-
ing available straightforward analytical or numerical

4. Chem. Phys,, Vol, 79,

treatments of certain applications, namely, (I) the low
friction case and (II) the diffusional case. To discuss
these two physical conditions, let us recall which are
the parameters determining the rate of change of the
variables x, v, v, and w. The velocity w of the trans-
verse mode may be regarded as changing much faster
than y when'®

A 2w, . (3.1)
As far as the variables x and » are concerned, the
counterpoint of w, is provided by

Wl =VaV,/at | (3.2)

which corresponds to the harmonic expansion of the po-
tential ¢, Eq. {1.2), around x=0. We shall consider
x as being very much slower than v when condition

y > 2wg (3.3)

is satisfied.

Following Christoffel and Bowman, ' we shall always
consider the pair of variables (v, ) as being much
faster than the pair (x, #); this is true, provided

wp Ky , (3.3
an assumption that we will always make.

If condition {3. 3) is not satisfied,we are forced to
define a and b as follows:

(3.4)
(3.4%)

Limiting case (I} {az ;0 s
b=y, w) .
This is the low-friction case.

When Eq. (3.3) is satisfied,we can define a and b as
follows:

{3.5)
(3.5%)

Limiting case (II} {aEx ’

b= (v, y,w) .

This is the diffusional case.

A. Low-friction limit {case 1}

We consider first the low-friction limit where condi-
tion (3.3") is satisfied and the separation of variables
displayed in Eas, (3.4) is adopted. The corresponding
unperturbed Liouville operators are

L= —v 6760 =k st (3.6
2= vaer xav+}’ avv+’t) 8_1)-5’ .
s Bl e B .

Lb“h{ﬂww+<w>aw2}+w°y o " 5y’ (3.6M

with the perturbation (remaining) part

L, =3'{x) 4" —a--f-ny"'l W{x) 2 (3.7
1 By 8 -

In our model, the exponent n equals 2 and the terms in
the right-hand side of Eq. (2. 16) may be written ex-
plicitly as
]
PL\(H) P=¢' () (3% 5 (3.8)

and
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cos'r{q]) _sin'r g
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t 1A 5%

_4sin’reos®r g (QEZ}

€ €46,

v 2 EZJ bx) 9 () %{

€ €2

where the quantities cos T, sint, q,, g3, €4, and €, are
completely specified inthe Appendix. The calculationofthe
limit # < in Eq. {3.9) introduces important simplifica-
tions in this expression by eliminating fluctuations in a
time scale T,; its substitution into Eq. {2.16) amounts

to the use of an averaged operator [acting on B{#)]
smoothened to the time scale of that equation, il.e., 7,.
No new approximations or hypothesis are implied by

this operation.

The contribution originated from Eq. (3.9} when re-
placed into Eq. (2.16) is unimportant in the extreme
limit of very large w, {compared with wy), and will be
disregarded. The final form of Eg. (2. 16) (for this
case I} is obtained using operators (3.6) and (3.8) and
it was solved using the continued-fraction algorithm.*””
The progress of the reaction is measured by some func-
tion of the time, normalized to lie in the interval {1, 0}
such as the average value of the position (x) {or the
population at one well). Its Laplace transform at the
origin gives an estimate of the time duration of the re~
action process and the inverse of this quantity K, shall:
be used as a measure of the reaction rate. The larger
the potential barrier, the better is this measure of the
rate.

The results are displayed in Fig. 1. Inagreement
with the quantum-mechanical calculation by Christoffel
and Bowman, ! we obtain a significant increase of the
reaction rate as (y2> increases. This can easily be
interpreted as being the result of the modification of
${x) into an effective potential,

Vi = (x93 (x) (05 .

We see that, in this low friction limit, the effect of
giving more energy to the transverse mode (larger
{3®) is equivalent to deepening the valley that the cou-
pling creates at the center of the barrier in a way re-
sembling the effect found by Christoffel and Bowman. '
This modification of the potential has a direct effect on
the reaction rate as shown in Fig. 1. [It should be
noted that an increase in A, , is equivalent to an increase
in {y* due to Eqgs. (3.10) and {1.4}.]

(3.10)

In the next subsection, we shail evaluate corrections
to the standard adiabatic approximation which will be
shown to become of increased significance as the ab-
solute value of (w,/wy) decreases. A single stochastic
variable will be used, whichmakes the numerical calcu-
lations based on the continmued-fraction algorithm a lot
easier. '

B. Diffusional limit {case 1)

Inthe diffusional case the method of calculationconsists
in regarding x as being the only variabie of interest

. 3 . 2 P %
T 2 T T
_cos’rsinT{gy  cosTsin @z _ 2sinTcos [sin®T (g3 - cos® 7 {g? ]} ,

€+ €q 3.9)

r

among those appearing in the set of Egs. (1.5). This,
of course, requires that y as well as w, be fairly large
{compared with wf).

In this case [cf. Eqgs. (3.5)] we have

as=x (3.11)

1,20, _ (3.12)
IS N 2 %

Ly=—w by +l{aw\w+(w) sz}_

B 8 a®

+yw§5;;+?{£v+(v2) m} , (3.127)

s ] - 9 B
Ly={o'(x)+ ¢ (x)y"}awtny 11,&(95)3; —v 5 (3.13)

From now on this will be called the firsf scheme of
calculation. In our model the exponent » equals 2.
When operators {(3.12) and (3. 13} are substituted into
Eq. (2.16), it is not difficult to see that the first and
second terms on the right-hand side vanish; the third

Sas

0er

0 41 2 3 475 & 7 8 8 1
Aint

FIG. L. Comparison between the decay rates K (relative o Ky,
the decay rate of (x) without interaction Xy = 0} as ealeulated
in the two limiting cases, the low friction limit with (v}
=0,5x 107 (a) or (#2)=2.0x10"" {b} and the diffusional iimit
(second scheme of caleulation) with {¢#?) = 0.5x 1077 {¢) or

{2y =2,0x107 (d). Other parameters were given the values
V,=3.3%x107, g=0.365, #=0.167, y=1.0x107% and (3w}

= {w?y={z%). The absolute decay rate K, takes the values of
75.,0x107¢ and 0.55x 107 for the assumed average square
velocities (p2Y=2.0x%107 and 0.5x 1077, respectively. Atomic
units are used throughout.
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term may be computed following the technigue used to
derive Eq. (3.9). The final result may be written in
the form

2y 42
2 £, 1) {% {9+ 100 (5] + %f;@}ﬂx, D,
(3.14)
where
Fle,t) = [ avavawple, v, v, w,0) . (3. 15)
Higher-order contributions [k> 2 in Eq. (2.14)] can
easily be evaluated by following the normal mode meth-
od of the Appendix. However, these resulis are so
cumbersome as to make it difficult to apply the com-
putational algorithm. On the other hand, the result
expressed by Eq. (3.14) is trivial in that this is nothing
but the result obtained in Sec. TIEA in the diffusional
itmit, with potential (3.10), that is the standard result
of the adiabatic elimination procedure. 11 Mori and co-
workers'™® " siressed that significant corrections can
result from higher-order contributions. Thus, it be-

comes vital to solve the problem of evaluating such cor-

rections.

To bypass the above mentioned computational diffi-
culty we envisaged a second scheme of calculation,
whose first step consists in replacing Eqs. (1.5) with

66§ o 1O

Ty ¥ y (3.18)
. ﬂ@_ _Ji_‘-f_z_ Filkt) '
bEely S oS (3.16")

This means that we assumed ¥ and X to be so large as
to make the diffusional assumption to be possible in
both cases. The variable of interest is still x. A mea-
sure of the time scale of the changes of this variable
can easily be obtained from the harmonic expansion of
the potential ¢ around x=0 and x=+xga. In the absence
of the coupling with the transverse normal mode the
short time dynamics of {(x*(}} is easily proven to be

(1)) = (x*(0)) exp(2T, ) (3.17)

for a starting point distribution mainly concentrated
around x=0, and

{3()) = {(x*(0)) exp( - 2T%)

for a starting point distribution mainly concentrated
around one of the minima x =+ a with the damping param-
eters given by

(3.18)

r’=2r, , (3.19)
2

r,==%. (3.19)
¥

The time scale for variable v, on the other hand, de-
pends on the damping parameter

2
Wy
T, :_T . {3.20)
We shall assume that the order of magnitude of A is
the same as that of ¥. This, together with condition

(3.3'), allows us to regard y as being a fast variable
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when compared to x. Under these assumptions, the
second scheme of calculation leads to

E R il

L.=5, " ol (3.21)
2 2 2
_wg 8wt 8% '
Ny VR ag (3. 21%)
1€ N I A VO
Li=2 x 3y 4 v P (x) . (3.22)

Applying now the perturbation procedure of Sec. II
up to the second order in L;, i.e., Eq. (2.16), we ob-
tain the new equation of motion

B oo dre o e L A B,
or (x,t)—{yaxgb(x)+78x¢(x)+wg-;-“ax¢(x)
2 2 2
x[%lﬁ P - %zp(x)] + %ﬁc—a}ﬂx, h .
(3.23)

Figure } shows the important role played by this cor-
rection in Lf. In this figure, results for the low-fric-
tion limit are compared with results from the second
scheme of calculation for the diffusional limit. We use
a very large friction for both limits in such a way that
the difference between the results for the low-friction
limit and for the diffusional limit cannot be traced back
to inertia effects. This discrepancy depends mainly on
the correction to the standard adiabatic approximation.
We were able to show that, in fact, when the third term
on the right-hand side of Eq. (3.23) is neglected one
obtains a curve coinciding with that corresponding to
the low-friction limit when the terms of Eq. {3.9) are
neglected. Since A, plays the role of the perturbation
parameter, our perturbation expansion ceases to be
valid when A, is close to 1. This could be a further
contribution to the large discrepancy between the two
limits, which, otherwise, has to be assumed to come
from the corrections to the adiabatic approximation. In
any case, this difference is a clear indication that such
corrections tend to increase the rate of the chemical
reaction under study. :

In Fig. 2, the variation of the reaction rate with the
range + of the coupling [Eq. (1.4)] is studied. The
maximum enhancement of the reaction rate is obtained
for ranges of about 40% of a (the half-distance between
the potential minima). We also notice that the effect of
the coupling disappears as » —, what seems to agree
with Grote and Hynes*® assumption of limiting the ef-
fect of the transverse mode to the saddle point. How-
ever, even in this limit, » -, large values of (3% may
produce a sizeable effect as can be shown by the analyti-
cal study that follows.

Consider the case

reoa . (3.24)
Equation {3. 23) can be given the following form:
L. 5, 1
atf(ﬁ,t)—v Py ldx —bx®+3 @x] Flx, )
R 2 ji}
+[2 axax +€ axz f(xsf) ] (3.25}
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3325

FIG. 2. WVariation of the reaction rate
with the inverse of the range » of the
interaction potential: {(a) low friction
limit with 3, =1.0; {b) diffusional
limit {second scheme of calculation) with
Aspt = 0. 2. Other parameters were given
the same values as in Fig. 1 with (2?}
=2.0x107%

K
Ko sl
2 =
1 L i
1 2
where
2 wg 2
d=2wi/y —s 7(7\“&”1“) , {3.26)
b=2wt/(va® , (3.26")
ol
Q=2p 7"8“?,.“ (3.26"")
e=0h/y, (3.26"")
p:?\/)f , (3‘ 251.?”)
S=(y2>/‘)“'2 . (3‘ 26””’)

For the particular case € =0 {i. e., vanishing additive
fluctuations), Eg. (3.25) above belongs to the class of
equations studied by Sehenzle and Brand, * what allows
us to apply their interesting remarks ahout the equilibri-
um distribution to our problem,

foolx) = Ny 1t2/9 exp(— Eg— xz) . (3.27)

When @ is small, this distribution is basically a Gauss-
ian function placed at the bottom of a well which may be
considered as the reactant well. When ¢ is increased,
the distribution shifts towards x =0 and broadens until

a threshold is reached at

Q=2d . (3.28)

If @ is increased further the distribution diverges at
x=0.

When {¢® is increased, d decreases and  increases.
Ag a consequence the excitation of the transverse nor-
mal mode makes the system tend towards the “cata-
strophic” condition of Bq. (3.28), In this situation the
population is distributed around the top of the barrier,
what may be likened to the result of an activation pro-
cess. In the presence of an additive stochastic force
{even of weak intensity), this activation process leads
to a significant increase of the reaction rate.

The kind of process described sbove is usually called
“noise-induced phase transition.” Faetti ef.al.” showed
that no slowing down is exhibited in the threshold re-
gion; this means that the time required to activate the
chemical reaction process is finite. The excifation of
the transverse normal mode, therefore, can really in-

1/r

crease the rate of the chemical reaction process under
study.

In our case the phase transition occurs when A, =2,
. ‘ Wi\ 2 VY2 .
A =¥ {—li[1+8(w—c) (1+‘<”~3~;2-5~)] /2((y2)+1')

in the case p=1.

(3.29)

in Fig. 3, we study how the reaction rate varies with
the coupling parameter A,,,. We are still using, of
course, the second scheme of calculation for the diffu-
sional limit and the figure shows that the reaction rate
attains a plateau value which is maintained until the
coupling parameter A, approaches the threshold value
A.; around this value, there is a very marked increase.
This agrees with our remarks concerning the noise-
induced phase transition phenomenon, even though
A, = 0.55 (the threshold value of A,,) is not small
enough to completely satisfy the basic requirement of
our perturbation approach.

To clarify further the implications of the results in
Fig. 3, we point out the following.

(i) We are dealing with an activation process where
the thermalization assumption {y%wd={? does not ap-
ply. (This assumption was made in the cases treated in
Figs. 1 and 2.) The energy on the reactive mode (mea-
sured by (®/2) is kept always smaller than the potential
barrier height, while the transverse mode is given a
very large energy from a suitable external source
{e.g., an electromagnetic field), 1In this situation the
threshold condition (3. 28} may be attained by an ap-
propriate tuning of the coupling parameter A,;,.

{ii) Equation (3.25) is valid in the limit » > a, l.e.,
on the left-hand side tail of Fig. 2. The new resuits in
Fig. 3 show how an enhancement of the reaction rate is
obtained in this region, originating from multiplicative
terms while the standard adiabatic corrections are in-
effective.

IV. CONCLUDING REMARKS

A major result of this paper is given by Eq. (3.29).
This means that the role of the coupling with the trans-
verse mode can be catastrophic in that this is the re-
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FIG. 3. Variation of the reaction rate
with the coupling parameter A;,, using the
second scheme of calculation in the dif-
fusional limit. The decay rate in the
absence of interaction is K,=30.0x10%%,
The threshold value of A, is A~ 0.55.
Other parameters were given the values
Vy=3.3x107, 2=0,183, »=0.366, {v%}
=2.0%107, y=1.0x%1072, and

(9B wh=85 %V,

quired condition for the noise-induced phase transition
of Refs. 7 and 14 to take place. This relationship has
been obtained by completely neglecting the additive
stochastic ferce. However, its role may be easily un-
derstood. Sehenzle and Brand'* pointed out that no sig-
nificant change in their analysis is to be expected from
additive stochastic forces of small intensity. Additive
stochastic forces of strong intensity, on the other hand,
make the problem void of interest as a fast chemical
reaction process is obtained even in the absence of in-
teraction with the transverse mode.

To stress the difference between the noise-induced
phase transifion and the increase in the chemical reac~
tion rate coming from the standard adiabatic approach,
we note the following. In the present case the adiabatic
approximation is equivalent to substituting the effective
potential of Eq. {3.10) for the real one ¢{x}). When
¥ > q, the increase in (4%, results in a mere decrease
of the barrier height. The noise-induced phase transi-
tion, on the contrary, is the result of the synergic be-
havior of both the deterministic contribution {3/5x) Qx
and the diffusional one (3%/8x% % Qx*[see Eq. (3.25}. As
a matter of fact, when condition {3. 29} is attained, the
linear part of the effective potential appearing in Eq.
{3.25) does not vanish. "By expanding the square root
appearing in Eg. (3.28) we obtain

wyz wla w:z wl4s+1
d=4—yl("w—u) +15—G("—Q) —5

b Y \@p 8
12 186 2
—1639—(&) (‘9_'*'31)._._‘_'“ (4.1
Y o\Wy 5

Thig means that for (w]/w,) ~ 0 the standard adiabatic
approach is basically correct. In fact, in this case, the
catastrophic behavior depends only on the actual disap-
pearance of the effective barrier. When w}/w, in-
creases, the catastrophic behavior depends on the co-
operation between the standard adiabatic effect men-
tioned above and the novel effect founded in this work.

int

The role of this latter effect becomes larger and larger
as wj/w, increases. The method used here has been
proved reliable for the evaluation of this important new
contribution.

~Our remarks on the strong effect of the transverse
normal mode have been limited to the case of large
friction. The scheme of Sec. IIIA shows how {o deal
with the case of low friction. We believe that a careful
study along this direction can allow one to extend the
catastrophic behavior of the large friction case to this
region.

APPENDIX

Let us consider the linear contribution to the last pair
of Eqgs. (1.5); we obtain the following two-dimensiopal
matrix:

[ 0 1] . (A1)
mwg - A

This matrix can be made symmetrical by using the sim-
ple change of variables

3"332 » ’ {A2)
(a2’

r

]

"=/ (fwg) .

By diagonalizing the matrix T’ we arrive at the following
normal modes:

w .
g1=VCOST+ T sinT , {A3)

¢y=—YSINT+ - cOST, (A3")
fwg

where sin{27) = 2iw,/A, corresponding to the eigenvalnes

61:—%[1-—(1-4w§/7\a)1"2}, - (A4)

€p=— % [1+(1 —4wd/A2M2] . (Ad”)
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This result is valid both in the oscillatory (2w,>A) and
in the overdamped {2w;<A) regimes. It is useful to ex-
press coordinates and corresponding derivatives in
terms of normal modes. This is achieved by the fol-
lowing relationships:

7 i . ] ]

" oy {sm‘r 5 +CO8T aqa} , (A5)
— =008 T —=~8inT — (A5%)
8y 3q; 8qy’

Y=C0STgy-8inTq;, (A8)
w=iwy{8inT gy +cos Tgy). (AB")

The advantages coming from using normal modes are
expressed by

9 8
mLot . plot _ o-egt (A?)
e e e
8q, By
and
Lyg;=€9; - (A1)

The latter eguation allows us to express g; as follows

q;ﬁ(qﬁ“a{z |+ 1,8 (n+ 1) ] + 3 ln—l,i)<n,i|},

. (A8)
where _
Lo|n, ) =ne;|n,d) . (A9)
Note that
BEAE R’?;%‘])WE | eq) (A10)
and i
Lyleq)=0 . (a11)
We can also express {#/9g,;} as
b} 1 . .
EQT:_.W; L2+ 1,1)(n+1)(n,.1[ (A12)

Defining the creation and annihilation operators

@ = {n+1,dn+1) (i (A13)
a'zz:}n—l,i}(n,ﬂ , (A13%)
n

we can write that

g =R e va’} (A14)
and

b4
L (A15)

+
. =T mijEd .
3 lan''*

Now it is easy to evaluate the necessary contributions
to Eq. {2.186).
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